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Improvement of Weyl’s inequality

M.G. Marmorino
Department of Chemistry, Indiana University South Bend, South Bend, IN, 46634, USA

E-mail: mmarmori@iusb.edu

Received 26 October 2004; revised 4 November 2004

Consider the construction of an operator from the sum of two component opera-
tors. Weyl’s inequality gives a lower bound to an eigenvalue of the constructed operator
using a single eigenvalue from each of the component operators. Using such minimal
information gives a poor bound, however, and when the eigenvectors that correspond
to the said eigenvalues of the component operators are known, Weyl’s inequality can be
significantly improved by considering the overlap of the two eigenvectors. This improve-
ment can sometimes be further improved when several eigenvectors of each compo-
nent operator are known so that the overlap of sub-eigenspaces are considered instead.
The improvement is best when there is minimal overlap and Weyl’s inequality returns
when the overlap is complete. An example with the hydrogen molecular ion is presented
which illustrates the superiority over Weyl’s inequality when eigenvector or sub-eigen-
space information is utilized.
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1. Introduction

Solution of the Schrödinger equation is a major goal of chemists, but as
most problems of interest do not yield an equation that can be solved ana-
lytically, chemists are forced to numerically approximate the eigenvalues and
eigenfunctions. The former, being real numbers instead of functions, are easier
to approximate but require upper and lower bounds to accurately localize the
true eigenvalue. Calculation of upper bounds has enjoyed phenomenol success
whereas lower bounds are typically not sought due to theoretical and calcula-
tional difficulties in the many approaches. To date, the most complicated chem-
ical system for which accurate lower bounds have been calculated is the lithium
atom [1,2].

The simplest approach to the calculation of lower bounds is by Weyl’s
inequality [3] which gives a lower bound to an eigenvalue of a sum of compo-
nent operators using eigenvalue information of the component operators. Weyl’s
inequality has theoretical significance (such as the fact that molecular energies
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are bounded below by sums of atomic energies [4]) but has little impact in the
realm of precise calculations. In this paper we improve Weyl’s inequality by con-
sidering, in part, the eigenspaces of the component operators as well. In the first
and simplest case (Section 3) we consider a single eigenvector from each com-
ponent operator. In the second and more general case (Section 4) we consider
sub-eigenspaces of dimension two or larger.

2. Weyl’s inequality

Define λ(C)
n to be the nth eigenvalue of the operator C ordered from lowest (most

negative) to highest (most positive). Let Sn be an n-dimensional subspace of a Hilbert
space H and Ln be a subspace of dimension less than or equal to n.

The max-min formulation [5] of eigenvalues is usually written as

λ
(C)

a+b−1 = max
Sa+b−2⊆H

min
f ∈S⊥

a+b−2

〈Cf, f 〉 , (1)

where f is restricted to the appropriate symmetry dictated by operator C and also
to a norm of 1. Any subspace Ln of Sn will yield a complementary subspace L⊥

n

larger than and including S⊥
n . Minimizing 〈Cf, f 〉 over this larger subspace may

give smaller minimums, but since we then choose the maximum of these mini-
mums, there is no change when including these subspaces of Sn in the max-min
formulation of eigenvalues. Thus we can write:

λ
(C)

a+b−1 = max
La+b−2⊆H

min
f ∈L⊥

a+b−2

〈Cf, f 〉 . (2)

We now assume that operator C is the sum of operators A and B. We define
a particular subspace to be the span of the lowest a − 1 eigenfunctions α1,
α2, . . . , αa−1 of A and lowest b−1 eigenfunctions β1, β2, . . . , βb−1 of B. This sub-
space has a maximum dimension of a +b−2 if 〈αi, βj 〉 = 0 for i < a and j < b.
It has a minimum dimension of the greater of a − 1 or b − 1 if the span of one
set of eigenfunctions is included in the span of the other. Thus it qualifies as one
of La+b−2 but perhaps not of Sa+b−2, and we call it LAB . Instead of maximizing
the minimums over subspaces in (2) we consider only the subspace LAB :

λ
(C)

a+b−1 � min
f ∈L⊥

AB

〈(A + B)f, f 〉 . (3)

Weyl’s inequality results in the next few steps

λ
(C)

a+b−1 � min
f ∈L⊥

AB

{〈Af, f 〉 + 〈Bf, f 〉} � min
f ∈L⊥

AB

〈Af, f 〉 + min
f ∈L⊥

AB

〈Bf, f 〉 � λ(A)
a + λ

(B)
b .

(4)

The last inequality results from the fact that f is perpendicular to the lowest a−1
eigenfunctions of A and the lowest b − 1 eigenfunctions of B.
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3. Improvement

Although the eigenfunctions of operators A and B appear symbolically in
the derivation of Weyl’s inequality, explicit knowledge of them is not required.
However, if the eigenvectors are known then they can be used to improve the
lower bound. This results from taking advantage of the fact that the ath and bth
eigenfunctions of A and B, respectively, may overlap. We assume a discrete set of
eigenfunctions for all operators but the analysis holds when parts of the spectra
of A, B and/or C are continuous. We start with (3) subtracting λ

(A)

a+1 and λ
(B)

b+1
from both sides:

λ
(C)

a+b−1 − λ
(A)

a+1 − λ
(B)

b+1 � min
f ∈L⊥

AB

[〈
(A − λ

(A)

a+1)f, f
〉
+

〈
(B − λ

(B)

a+1)f, f
〉]

= min
f ∈L⊥

AB




∞∑
i=1

|〈f | αi〉|2(λ(A)
i − λ

(A)

a+1)

+
∞∑

j=1

∣∣〈f ∣∣ βj

〉∣∣2
(λ

(B)
j − λ

(B)

b+1)


 (5)

Given the particular subspace LAB , all f ∈ S⊥
AB are orthogonal to αi for i < a

and βj for j < b since LAB is the span of these eigenfunctions. Thus the sums
in (5) need not start with the index one:

λ
(C)

a+b−1 − λ
(A)

a+1 − λ
(B)

b+1 � min
f ∈L⊥

AB




∞∑
i=a

|〈f | αi〉|2(λ(A)
i − λ

(A)

a+1)

+
∞∑

j=b

∣∣〈f ∣∣ βj

〉∣∣2
(λ

(B)
j − λ

(B)

b+1)


 . (6)

Furthermore, since only the i = a and j = b terms in the summations are neg-
ative we are able to write

λ
(C)

a+b−1− λ
(A)

a+1− λ
(B)

b+1 � min
f ∈L⊥

AB

[
|〈f | αa〉|2 (λ(A)

a − λ
(A)

a+1) + |〈f | βb〉|2 (λ
(B)
b − λ

(B)

b+1)
]
.

(7)

The resulting bound to λ
(C)

a+b−1 is more conveniently written as

λ
(C)

a+b−1 � λ
(A)

a+1 + λ
(B)

b+1 + min
f ∈L⊥

AB

{(r2
a + s2

b)�A + s2
b(�B − �A)}, (8)

where �A = λ(A)
a − λ

(A)

a+1, �B = λ
(B)
b − λ

(B)

b+1, ra = |〈f |αa〉|, sb = |〈f |βb〉| and
without loss of generality �B � �A < 0.
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Ignoring restrictions on ra and sb, Weyl’s inequality results when their
squares are taken as one. When the restrictions are taken into consideration,
however, Weyl’s inequality improves. Noting that �A and (�B − �A) are both
negative, it is apparent that any such improvement is limited to λ

(A)

a+1 + λ
(B)

b+1 at
best. The restrictions are obtained using the Gram determinant of the functions
f, αa and βb which gives:

r2
a + s2

b � 1 − s2 + 2srasb, (9)

where s = |〈αa, βb〉|. Using the relationship (ra − sb)
2 � 0 in (9) gives

r2
a + s2

b � 1 − s2 + s(r2
a + s2

b), (10)

to yield the following bound

r2
a + s2

b � 1 − s2

1 − s
= 1 + s. (11)

Inserting (11) in (8) gives

λ
(C)

a+b−1 � λ
(A)

a+1 + λ
(B)

b+1 + min
f ∈L⊥

AB

[(1 + s)�A + s2
b(�B − �A)]. (12)

If we now ignore the restriction on sb by letting it equal one we obtain

λ
(C)

a+b−1 � λ
(B)
b + λ

(A)

a+1 + s(λ(A)
a − λ

(A)

a+1), (13)

since s is independent of f. Weyl’s inequality is obtained only in the case when
s = 1, i.e., |〈αa, βb〉| = 1, otherwise (13) is superior. The best result is obtained
when s = 0.

4. Generalization

The result above can be generalized by considering a sub-eigenspace of
dimension two or more of each component operator instead of just a single
eigenvector. To this end, one subtracts λ

(A)

m+a+1 and λ
(B)

m+b+1, where integer m > 0,
from both sides of (3) and continues the derivation as before. The significance of
m is that it is the number of additional eigenvectors each of A and B considered.
In place of (7) one obtains the following:

λ
(C)

a+b−1 � λ
(A)

m+a+1 + λ
(B)

m+b+1 + min
f ∈L⊥

AB




m+a∑
i=a

|〈f | αi〉|2
(
λ

(A)
i − λ

(A)

m+a+1

)

+
m+b∑
j=b

∣∣〈f ∣∣ βj

〉∣∣2(
λ

(B)
j − λ

(B)

m+b+1

)

 (14)
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As the term to be minimized is negative, the best possible bound that could be
obtained is λ

(A)

m+a+1 +λ
(B)

m+b+1, which by virtue of “m” is more promising than the
limit λ

(A)

a+1 +λ
(B)

b+1 presented in Section 3. We simplify, which simultaneously wors-
ens, (14) by taking the largest magnitude eigenvalue differences outside the sum-
mations:

λ
(C)

a+b−1 � λ
(A)

m+a+1 + λ
(B)

m+b+1 + min
f ∈L⊥

AB

[
(λ(A)

a − λ
(A)

m+a+1)

m+a∑
i=a

|〈f | αi〉|2

+(λ
(B)
b − λ

(B)

m+b+1)

m+b∑
j=b

∣∣〈f ∣∣ βj

〉∣∣2
]
. (15)

It is this simplification that will make our more general bound not necessar-
ily an improvement over the less general bound using a single eigenvector from
each component operator. We define fA to be the normalized projection of
a normalized function f on the subspace spanned by the eigenfunctions αa,
αa+1, . . . , αm+a. We define fB analogously, and then note that the summations
in (15) can be written as |〈f |fA〉|2 and |〈f |fB〉|2,

λ
(C)

a+b−1 � λ
(A)

m+a+1 + λ
(B)

m+b+1 + min
f ∈L⊥

AB

[
�A |〈f | fA〉|2 + �B |〈f | fB〉|2] (16)

where we now let �A = λ(A)
a −λ

(A)

a+m+1 and �B = λ
(B)
b −λ

(B)

b+m+1. Similar to before
we require, without loss of generality, that �B � �A < 0 and rearrange (16) to

λ
(C)

a+b−1 � λ
(A)

m+a+1 + λ
(B)

m+b+1 + min
f ∈L⊥

AB

[
�A

(|〈f | fA〉|2 + |〈f | fB〉|2)

+(�B − �A) |〈f | fB〉|2] . (17)

We then set up a Gram determinant with the functions f, fA and fB to obtain
the inequality

|〈f | fA〉|2 + |〈f | fB〉|2 � 1 + |〈fA | fB〉| . (18)

Since f is variable, so are fA and fB . Instead of the maximum value of |〈fA|fB〉|,
we seek the possibly larger, but not smaller, quantity |〈gA|gB〉| where gA is any
normalized function in the subspace spanned by the eigenfunctions αa, αa+1, . . . ,
αm+a − and analogously for gB . Thus gA and gB are completely independent
of each other while fA and fB are related through f. The maximum of |〈gA|gB〉|
equals the magnitude of both the positive and negative extrema of 〈gA|gB〉 since
|〈gA|gB〉| = |−〈gA|gB〉| = |〈−gA|gB〉| assuming real functions. We expand 〈gA|gB〉

〈gA | gB〉 =
〈

m+a∑
i=a

ciαi

∣∣∣∣∣∣
m+b∑
j=b

djβj

〉
=

m+a∑
i=a

ci

m+b∑
j=b

djxij , (19)
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where xij = 〈
αi

∣∣ βj

〉
and ci and dj are expansion coefficients and bound 〈gA|gB〉

in two stages: first eliminate ci , then eliminate dj . For the first stage we use
the Lagrange method of undetermined multipliers with the partial constraint∑m+a

i=a c2
i = 1 so that the following is extremized

m+a∑
i=a

ci

m+b∑
j=b

djxij − λ

m+a∑
i=a

c2
i , (20)

which gives the optimal expansion coefficients of gA as

c∗
i = 1

2λ

m+b∑
j=b

djxij , (21)

for all i = a, a + 1, . . . , a + m where the “*” indicates these expansion coeffi-
cients are those that extremize 〈gA|gB〉. Next square and then sum both sides of
(21) over i to get unity since gA is normalized and solve for λ.

λ = ±1
2

√√√√√√
m+a∑
i=a







m+b∑
j=b

djxij




2

. (22)

Rearrange (21) to get

m+b∑
j=b

djxij = 2λc∗
i , (23)

to substitute directly in (19) followed by substitution of (22):

∣∣〈gA | gB〉extreme

∣∣ =
∣∣∣∣∣∣
m+a∑
i=a

c∗
i

m+b∑
j=b

djxij

∣∣∣∣∣∣
= 2 |λ|

m+a∑
i=a

(c∗
i )

2

= 2 |λ| =

√√√√√√
m+a∑
i=a







m+b∑
j=b

djxij




2

. (24)

Now that the expansion coefficients ci of gA have been optimized and eliminated
we concentrate on the expansion coefficients dj of gB . We recognize that the final
right-hand side of (24) is the length, or norm, of the vector Xd∗

∣∣〈gA | gB〉extreme

∣∣ = ∥∥Xd∗∥∥ = (
Xd∗ • Xd∗)1/2 = (

d∗ • XT Xd∗)1/2
, (25)
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where X is the (m + 1) × (m + 1) matrix with elements xij = 〈
αi

∣∣ βj

〉
, XT is

its transpose (for a real matrix), and d∗ is the vector (d∗
b , d∗

b+1, . . . , d
∗
b+m) corre-

sponding to the function gB . All that remains is to note that (d∗ • XT Xd∗)1/2 is
the square-root, s*, of the largest magnitude eigenvalue of XTX so that the find-
ing the extreme value of 〈gA|gB〉 reduces to a matrix-eigenvalue problem. We are
now able to bound (18)

|〈f | fA〉|2 + |〈f | fB〉|2 � 1 + |〈fA | fB〉| � 1 + |〈gA | gB〉| � 1 + s∗, (26)

which is inserted in (17) where we also bound |〈f |fB〉| with one. Upon simplifi-
cation we arise at the final generalized bound to λ

(C)

a+b−1

λ
(C)

a+b−1 � λ
(A)

m+a+1 + λ
(B)
b + s∗(λ(A)

a − λ
(A)

m+a+1), (27)

which reduces to (13) when m = 0 so that the more specific bound is included in
the more general. Inequality (27) can be written in a different form which allows
a better comparison with the simpler improvement of Weyl’s inequality (13)

λ
(C)

a+b−1 � λ
(A)

a+1 + λ
(B)
b + s∗(λ(A)

a − λ
(A)

a+1) + δ (28)

where δ = (1 − s∗)(λ(A)

m+a+1 − λ
(A)

a+1) � 0. Ignoring δ, (28) and (13) are identi-
cal if the overlap of the two eigenvectors, s, is the same as the overlap of two
sub-eigenspaces, s*. Considering the positive δ would then cause (28) to be a
certain improvement of (13). Unfortunately the overlap of two sub-eigenspaces
never decreases, and typically increases, as the sub-eigenspaces get larger. Thus
s*, which is the overlap of two many-dimensional sub-eigenspaces, will typically
exceed s, the overlap of two one-dimensional sub-eigenspaces, and the improve-
ment of (28) over (13) is not certain.

5. Example

To illustrate the improvement of Weyl’s method using (13) and (27) and the
fact that (27) is not necessarily an improvement of (13) we consider an example.
The simplest diatomic molecule is the hydrogen molecular cation H+

2 for which
the Hamiltonian operator C is

C = T + V+ + V−, (29)

where T is the kinetic energy operator for the single electron and V+ and V−
are the potential energy operators for the attraction of the electron to the first
and second nuclei (i.e., protons), respectively, which are displaced from the ori-
gin along the positive and negative x-axis, respectively. The Hamiltonian C can
also be written as the sum of the operators A and B:

A = 1
2

(T + 2V+) B = 1
2

(T + 2V−) , (30)
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each of which is half the Hamiltonian for a He+ cation, but at a different
location. Because V+ and V− are the same except for the center of the poten-
tial, the symmetry of the eigenfunctions of C is such that ra = sb as long as
a = b. The eigenvalues (in hartree energy units) of A and B are both λ1 = −1,
λ2 = · · · = λ5 = −1/4, λ6 = · · · = λ14 = −1/9, . . . , λ∞ = −1. We seek a lower
bound to λ

(C)

1 . Bounds (13) and (27) reduce in this case to

λ
(C)

1 � −5
4

− 3
4
s (31)

and

λ
(C)

1 � −10
9

− 8
9
s∗ (32)

respectively, while Weyl’s bound is constant at −2.00. The eigenvectors for use in
(13,31) are a 1s He+ orbital placed at each nucleus. The sub-eigenspaces for use
in (27,32) are the span of 1s, 2s, 2px , 2py and 2pz He+ orbitals at each nucleus
so that m = 4.

Figure 1 plots the lower bounds using the eigenvector improvement (13,31)
and the sub-eigenspace improvement (27,32) along with accurate values of the
energy [6] as the internuclear distance varies. Weyl’s inequality is constant at
−2.00 hartree and provides a very poor lower bound. At small internuclear
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Figure 1. The true electronic energy of H+
2 is plotted without data point markers [6]. Below it are

lower bounds using (13, 31) with square data point markers and lower bounds using (27, 32) with
triangular data point markers. Weyl’s inequality gives a constant lower bound of −2.00 hartree.
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Figure 2. The overlaps s and s∗ are plotted as a function of the internuclear distance. Square data
point markers denote s (for the eigenvector case) while triangular data point markers denote s∗ (for
the sub-eigenspace case). Low values of s and s∗ allow the associated lower bounds to reach their

potential.

distances the sub-eigenspace improvement is poorer than the eigenvector improve-
ment. Although the former has the more potential (−1.11 hartree vs. −1.25 har-
tree) the large value of s* causes poor performance. Only after the internuclear
distance has increased beyond about eight bohr does s* become low enough
(see figure 2) for the potential of the sub-eigenspace improvement to be realized.
Using larger sub-eigenspaces in (27) would improve the lower bounds, though
only at even larger internuclear distances as s* typically increases as the dimen-
sion of the sub-eigenspace increases. Furthermore the improvement would be
small as there exists an ultimate limit of −1.00 hartree for the improvements pre-
sented here based on λ1 + λ∞ in (27) when m = ∞ due to the bunching of the
He+ eigenvalues near −1.00 hartree.

6. Summary

Weyl’s inequality provides a simple lower bound to the eigenvalue of a sum
of two operators using the eigenvalues of the two component operators. This
has been improved by considering the overlap of sub-eigenspaces of the individ-
ual operators and the improvement is better when the overlap is minimal. The
general bound, which considers many-dimensional sub-eigenspaces, while never
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inferior to Weyl’s inequality, is sometimes inferior to the simpler bound which
considers one-dimensional sub-eigenspaces (i.e., eigenvectors) due to a drastic
simplification in the derivation of the more general bound.
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